
Out-of-core Algorithms for Binary Partition Hierarchies

Josselin Lefèvre1,2, Jean Cousty1, Benjamin Perret1, Harold Phelippeau2

1LIGM, Univ Gustave Eiffel, CNRS, F-77454 Marne-la-Vallée, France.
2Thermo Fisher Scientific, Bordeaux, France.

Abstract
Binary partition hierarchies (BPH) and minimum spanning trees are essential data structures for
hierarchical analysis, such as quasi-flat zones and watershed segmentation. Traditional BPH construc-
tion algorithms are limited by their requirement to load the data entirely into memory, making them
impractical for processing large images whose processing exceeds the capacity of the computer’s main
memory. To overcome this limitation, an algebraic framework was introduced, enabling the out-of-
core computation of BPH leveraging three key operations: select, join, and insert. In this publication,
we present two distinct calculi based on these operations: one designed for general spatial partitions
and another optimized for causal partitioning. The second calculus is specifically tailored to meet out-
of-core constraints, ensuring efficient processing of large-scale data. We provide detailed algorithms,
including pseudo-code and complexity analysis, and conduct experimental comparisons between the
two approaches.

Keywords: Image segmentation, Watershed, Hierarchical analysis, Out of core, External memory algorithm

1 Introduction
Hierarchies of partitions are versatile representa-
tions that have proved to be useful in a wide
variety of computer vision, image analysis, and
processing problems. In this context, binary par-
tition hierarchies [1, 2] (BPH) among them those
built from altitude ordering and associated mini-
mum spanning trees are key structures for several
(hierarchical) segmentation methods: in particu-
lar, it has been shown [3, 4] that such hierarchies
can be used to efficiently compute quasi-flat zone
(also referred to as α-trees) hierarchies [3, 5]
and watersheds, including its hierarchical varia-
tions [3, 6]. These variations found applications
in multiple fields such as biology [7], composite
material [8], historical buildings characterization
[9], rock instability detection [10], or remote sens-
ing [11, 12]. Efficient algorithms for building BPHs
on standard size images are well established, but,

with the constant improvement in acquisition
systems comes a dramatic increase in image reso-
lutions, resulting in images that can reach several
terabytes in size. While a single image may fit into
the main memory of a standard workstation, its
processing, including notably auxiliary data struc-
tures, often does not, causing classical algorithms
for BPHs to fail. Consequently, there is a need
for scalable algorithms to construct BPHs in an
out-of-core manner to handle these images.

This issue has spurred research across vari-
ous fields [13]. The image processing community
has explored methods such as the random walker
algorithm [14], while topographic studies focus on
calculating watersheds for elevation data [15, 16].
Additionally, there is relevant work in terrain
rendering [17] and linear algebra [18], underscor-
ing the broad interest in addressing the need for
scalable solutions to handle massive datasets.

1



As regards hierarchical analysis, previous
works [19–21] have explored shared and dis-
tributed memory algorithm to compute compo-
nent trees for terabytes images. The computation
of minimum spanning trees of streaming images
has been considered [22], and parallel algorithms
for the computation of quasi-flat zones hierarchies
have been proposed [23]. Recently, massively par-
allel algorithms for computing max-trees on GPUs
were introduced [24]. These works generally rely
on processing small pieces of the space indepen-
dently, “joining” the information from adjacent
pieces, and ”inserting” this joint information into
other pieces. This methodology, which has proved
its worth for these different problems, is inter-
esting from a memory point of view and could
be exploited for our purposes. Additionally, the
Multi-Scale Component-Tree (MSCT) [25] offers
a hierarchical representation that adapts to the
local informativeness of the image, potentially
enhancing the efficiency of handling very large
images.

In [26], the authors specifically tackled the
challenge of computing a BPH under the out-
of-core constraint, i.e., when the objective is to
minimize the amount of memory required by the
algorithms at each computation step. To achieve
this, they introduced an algebraic framework for-
malizing the distribution of a hierarchy over a
partition of the space. This distribution is actually
a collection of smaller sub-hierarchies of the BPH,
each one being associated with one region (also
called a slice or a tile in the following, depend-
ing on the context) of the partition. In order
to compute this distribution, they introduced a
high level calculus encompassing three algebraic
operations acting on hierarchies: select, join, and
insert. They demonstrated that with a causal par-
tition of the space, it is possible to compute the
distribution of a BPH using these operations by
browsing different slices of the partition twice
(once in a forward pass and once in a backward
pass), requiring only information about two adja-
cent slices in the main memory at any step of the
algorithm. In [27], efficient algorithms and com-
plexity analyses were provided for the select, join,
and insert operations. This article extends [26]
and [27]. In particular, we present two types of
BPH computations adapted to large images. The
first one is able to consider the distribution of
the BPH over any generic partition of the space

while the second one, originally presented in [26],
deals only with causal partitions. We present the
advantages and drawbacks of these two types of
computations in the form of (i) properties (namely
Properties 9 and 11) asserting to what extent
the out-of-core constraint is respected by the sec-
ond computation, (ii) a counter-example (namely
counter-example 1) showing the theoretical limits
of the first one, and (iii) an experimental study
validating both approaches and experimentally
comparing the proposed computation schemes.
The implementation of the method in C++ and
Python based on the hierarchical graph processing
library Higra [28] is available online.1

This article is organized as follows. Section 2
provides an overview of existing works. Section 3
defines BPH. Section 4 recalls the notion of
the distribution of a hierarchy and the calculus
method that can be used to compute such a distri-
bution over any partition and a causal partition of
the space. Section 5.1 explains the proposed data
structures. Section 5.1 presents the algorithms
for the three operations select, join, and insert.
Section 6 presents an experimental study of the
proposed computation schemes. Finally, Section 7
concludes the work and offers some perspectives.

2 Prior Work
Among all the hierarchical structures used in
mathematical morphology [29–31], component
trees have undoubtedly received the most atten-
tion in terms of parallelism and distributed com-
puting. While existing approaches predominantly
focus on reducing computational time, our specific
interest lies in methods that focus on optimizing
communications.

Early attempts to parallelize the construction
of component trees, more precisely of max-trees
[32], use shared memory to construct a monolithic
global component tree representation [33, 34].
These algorithms rely on a divide-and-conquer
strategy: the image is divided into tiles for which
a partial component tree is computed. Then, the
partial component trees are merged together.

However, due to the continuing technologi-
cal improvements of sensors, the volume of data
has largely increased, which limits the use of
shared memory. To address this problem, recent

1https://github.com/PerretB/Higra-distributed

2

https://github.com/PerretB/Higra-distributed


work has introduced a novel paradigm involving
distributed memory and computing [20]. Among
them, Kazemier et al. [21] brought the idea of cre-
ating not a single component tree, but a forest
of component trees, each tree associated with a
tile. This new approach, which was subsequently
improved to handle higher dynamic range data
[19], allows each tree to be filtered in such a way
that the result is the same as filtering the whole
tree.

To facilitate communication between pro-
cesses, these algorithms use a datastructure called
as a boundary tree. This structure is simply the
subtree of a partial component tree comprising
every region intersecting the border of a tile.
Hence, this structure is transmitted from a com-
putation node to another instead of transmitting
the entire partial component tree. Authors claim
that these subtrees have significantly smaller
memory footprint, often less than 1% of a partial
tree in low dynamic range scenario. The method
can be roughly summarized as follows:

1. Split the data into tiles and calculate a par-
tial hierarchy on each tile using the usual
algorithm;

2. Extract boundary tree from each partial hier-
archy and merge them together;

3. Back-propagate the merged information for
each partial hierarchy.

This study on component trees is echoed in
a domain closely related with our research focus:
quasi-flat zones hierarchies (QFZ) [35], also rec-
ognized as α-trees. While component trees rely on
an order relation between pixel values, our interest
lies in BPH, which is built upon a total ordering
on edge values. Similarly, the construction of QFZ
follows a comparable paradigm, with established
connections between with BPH [3].

This latter study was combined with a paral-
lel method for QFZ computation [36] resulting in
an efficient algorithm outperforming previous ones
[23]. While aligned with the aforementioned com-
ponent trees algorithms, a unique aspect of their
approach involves fusing two hierarchies within
the edges-weighted graph framework by inserting
edges to its correct rank.

We can get even closer to the structures of
interest with the work of Gigli et al. [22], who
tackle the problem of computing the MST of the

union of two graphs with a non-empty intersec-
tion applied to image streaming. This calculation
determines the stable part of the current MST, the
part that will not be affected by future changes.
And its unstable counterpart. This method even
has a direct application to out-of-core computa-
tions, as the stable part can be stored on disk and
not used in subsequent computations.

Among various strategies explored in the lit-
erature, the approaches proposed by Kazemier
et al. [21] stand out as particularly noteworthy,
given the memory-saving aspect. Therefore, we
have drawn inspiration from the latter approach
to formalize it within the framework of edge-
weighted graphs, with a specific emphasis on
memory constraints.

3 Binary Partition Hierarchy
by Altitude Ordering

In this section, we first remind the definitions of
hierarchy of partitions. Then we define the binary
partition hierarchy by altitude ordering using the
edge-addition operator [26] and we recall the bijec-
tion existing between the regions of this hierarchy
and the edges of a minimum spanning tree of the
graph.

Let V be a set. A partition of V is a set of
pairwise disjoint subsets of V . Any element of a
partition is called a region of this partition. The
ground of a partition P, denoted by gr(P), is
the union of the regions of P. A partition whose
ground is V is called a complete partition of V .
Let P and Q be two partitions of V . We say
that Q is a refinement of P if any region of Q
is included in a region of P. A hierarchy on V is
a sequence (P0, . . . , Pℓ) of partitions of V such
that, for any λ in {0, . . . , ℓ − 1}, the partition Pλ

is a refinement of Pλ+1. Let H = (P0, . . . , Pℓ) be
a hierarchy. The integer ℓ is called the depth of H
and, for any λ in {0, . . . , ℓ}, the partition Pλ is
called the λ-scale of H. In the following, if λ is
an integer in {0, . . . , ℓ}, we denote by H[λ] the λ-
scale of H. For any λ in {0, . . . , ℓ}, any region of
the λ-scale of H is also called a region of H. The
hierarchy H is complete if H[0] = {{x} | x ∈ V }
and if H[ℓ] = {V }. The ground of a hierarchy is
the support of its 0-scale. The ground of a hierar-
chy H is denoted by gr(H). We denote by Hℓ(V )
the set of all hierarchies on V of depth ℓ, by P(V )

3



the set of all partitions on V , and by 2|V | the set
of all subsets of V .

The binary partition hierarchy by altitude
ordering, simply called binary partition hierarchy
in the following, is associated with a graph and to
an ordering of the edges of this graph. In general,
for image or data segmentation, this ordering is
obtained by weighting the edges of the graph (e.g.,
with a dissimilarity measure between vertices) and
by sorting them in increasing order of weight.

Important notation. In this article, the symbol
G = (V, E) stands for a graph where V is a finite
set and E is composed of unordered pairs of dis-
tinct elements in V . The elements of V are called
the vertices of G while those of E are called edges.
We denote by ℓ the number of edges of G, that
is, ℓ = |E|. The symbol ≺ denotes a total order
on E.

Let k in {1, . . . , ℓ}, we denote by u≺
k the k-th

element of E for the order ≺. Let u be an edge
in E, the rank of u for ≺, denoted by r≺(u), is
the unique integer k such that u = u≺

k .
Following [26], the binary partition hierarchy

can be defined thanks to an elementary exterior
operation on hierarchies, called an update. Let H
be any hierarchy in Hℓ(V ), and let {x, y} be any
edge of G. The update of H with respect to {x, y},
denoted by H ⊕ {x, y}, is the hierarchy such that:

• H ⊕ {x, y}[λ] remains unchanged (i.e., H ⊕
{x, y}[λ] = H[λ]) for any λ in {0, k − 1},
with k being the rank of {x, y}, while

• for any λ in {k, . . . , ℓ}, we have (H ⊕
{x, y})[λ] = H[λ] \ {Rx, Ry} ∪ {Rx ∪ Ry}
where Rx (resp. Ry) denotes the region
of H[λ] containing x (resp. y).

Let E′ ⊆ E and let H be a hierarchy. We
set H ⊞ E′ = H ⊕ u1 ⊕ · · · ⊕ u|E′| where E′ =
{u1, . . . , u|E′|}. The binary operation ⊞ is called
the edge-addition.

Definition 1 (Binary Partition Hierarchy by
Altitude Ordering). Let V be a set, let ⊥V the
hierarchy defined by ⊥V [λ] = {{v} | v ∈ V }, for
any λ in {0, . . . , ℓ}. The Binary Partition Hier-
archy for ≺, denoted by B≺ is the hierarchy ⊥X

⊞E.

a b

c d

e f

g h

5

1

7

6

2

8

9

3

10

4

G

a bc d

1
3

5

X

e hf g
2

8
9

Y

Fig. 1: G a 4-adjacency graph divided into two
slices A and B (respectively, blue and green). Each
edge of G is associated with its rank. The two
slices are separated by their common neighbor-
hood, i.e., edges of ranks 4 and 6. Hierarchy X
(respectively, Y) is the BPH built on A (respec-
tively, B). Ids associated with non-leaf nodes of
the BPHs correspond to the weights of their cor-
responding building edges represented by dashed
edges in G. We can note that MSTs built on slices
(dashed edges) are not subtrees of the MST built
on A∪B (shown as shadow). In consequence, edge
of rank 8 (in red) is part of the hierarchy Y when
it should not be.

Complete hierarchies are often represented
with tree structures where each region is repre-
sented by a node in the tree. The root corresponds
to the whole set V (i.e., the unique region of the
ℓ-scale), while the leaves correspond to singleton
regions (i.e., the regions of the 0-scale). A node p
is the parent of a node n if the region correspond-
ing to n is included in the region represented by p
without any intermediary (i.e., there is no proper
superset of the former region that is proper subset
of the latter). Accordingly, the root is the region
without a parent and the leaves are the regions
without any child.

Let R be a region of B≺ and R⋆ be the set of
non-leaf regions of B≺. The rank of R, denoted
by r(R), is the lowest integer λ such that R is a
region of B≺[λ]. We consider the map µ from R⋆

in E such that, for any non-leaf region R of B≺,
we have µ≺(R) = u≺

r(R). We say that µ≺(R) is the
building edge of R. When the order ≺ is obtained

4



from weights defined on the edges of G, the set
of building edges of the binary partitions hier-
archy defines a minimum spanning tree of this
edge-weighted graph [3].

In Figure 1, Y is the BPH built on the
4-adjacency graph built on the region B. Non-
leaf nodes of Y correspond to the edges of the
minimum spanning tree of B (dashed edges).

4 Out-of-core Binary Partition
Hierarchy

In this section, we first present the notion of a
distribution of a hierarchy over a partition of the
space in Section 4.1. Then, we present three oper-
ations which play the role of basic building blocks
for building distributed hierarchies (Section 4.2).
In Section 4.3, we define and study a first cal-
culus for building a distributed BPH, while in
Section 4.4 we present a second calculus that is
less generic but for which some formal additional
guarantees regarding its out-of-core abilities are
established.

4.1 Distribution of Hierarchies
In this section, we define the structure we are
seeking to build, namely the distribution a BPH.
Intuitively, distributing a hierarchy consists in
splitting it into a set of smaller hierarchies such
that:

1. each smaller hierarchy corresponds to a
selected subpart of the whole hierarchy that
hits a slice of the graph; and

2. the initial hierarchy can be reconstructed by
“gluing” those smaller hierarchies.

We first present the operations that allow for
selecting a subset of a partition and of a hierarchy
that hit a given part of the space, before providing
the definition of a distribution of a hierarchy.

The operation sel is the map from 2|V | ×
P(V ) to P(V ) which associates with any sub-
set X of V and to any partition P of V the
subset sel(X, P) of P which contains every region
of P that contains an element of X.

Definition 2 (Select). The operation select
is the map from 2|V | × Hℓ(V ) in Hℓ(V ) which
associates with any subset X of V and to any
hierarchy H on V the hierarchy select (X, H) =

(sel (X, H[0]) , . . . , sel (X, H[ℓ])). We say that
select (X, H) is the selection of X in H.

Intuitively, this operation consists in the
extraction of a sub-hierarchy from a given hier-
archy, comprising every region that intersects the
input subset. Analogously, within the context of a
tree representation of a hierarchy, it corresponds
to selecting the subtree encompassing all selected
leaves corresponding to the vertices of the input
subset and their parents. In Figure 2, the hierar-
chy X corresponds to the result from applying the
operation select ({a, b, c, d}, H).

We can use this latter definition to define a
representation consisting in the decomposition of
a hierarchy in a set of smaller hierarchies.

Definition 3 (Distribution). Let P be a com-
plete partition on V and let H be a hierarchy
on V . The distribution of H over P is the
set {select (R, H) | R ∈ P}.

The distribution of a hierarchy is depicted on
Figure 2 with {X , Y} being the distribution of H
on the partition {A, B}.

4.2 Fundamental Operations for
Distributed Hierarchy

In this section, we recall the definition of two
fundamental operations, join and insert intro-
duced in [26]. These operations, together with
select operation, enable the computation of BPH
distributions in an out-of-core fashion.

Before introducing these two fundamental
operations, let us recall some notions related to
the neighborhood of regions in partitions and to
the lattice of hierarchies which are necessary in
the sequel.

We denote by γ the operator that maps to any
two distinct subsets X and Y of V the subset of E
made of every edge of E that contains exactly
one vertex of X and exactly one vertex of Y , i.e.,
γ(X, Y ) = {{x, y} ∈ E | x ∈ X ∧ y ∈ Y }. The
set γ(X, Y ) is called the common neighborhood
of X and Y . For instance, in Figure 1, the com-
mon neighborhood of the two regions A and B
contains the edges {c, e} and {d, f}: γ(A, B) =
{{c, e}, {d, f}}.

Let X and Y be two hierarchies in Hℓ(V ).
We say that Y is smaller than X if, for any λ

5



e hf ga bc d
3 1
4

5
6

9

2

H

a bc d
13

4
5
6
9

e hf g

4
2

5
6

9

X Y

Fig. 2: A BPH H built on the graph in Figure 1
(on top) and its distribution on the bi-partition of
the space {A, B} with A = {a, b, c, d} (blue) and
B = {e, f, g, h} (green). Elements of this distribu-
tion are X = select (A, H) and Y = select (B, H).

in {0, . . . , ℓ}, the partition Y[λ] is a refinement
of X [λ]. If Y is smaller than X , we write Y ⊑ X .
The set Hℓ(V ) equipped with the relation ⊑ is a
lattice whose supremum is denoted by ⊔ (see [37]
for properties of this lattice and supremum and
see Figure 3 for an illustration).

Definition 4 (Join). Let X and Y be two
hierarchies in Hℓ(V ). The join of X and Y,
denoted by join(X , Y), is the hierarchy defined
by join(X , Y) = (X ⊔Y)⊞F , where F is the com-
mon neighborhood of the grounds of X and of Y,
i.e., F = γ(gr(X ), gr(Y)).

The operation join is illustrated in Figure 4.
We can see that edges 4 and 6 are inserted at their
proper rank in J discarding the region 7 which
does not belong to the MST.

Definition 5 (Insert). Let X and Y be two
hierarchies.

We say that X is insertable in Y if, for any λ
in {0, . . . , ℓ}, for any region Y of Y[λ], Y is

(a) Edge-weighted graph

(b) Nested partitions

(c) Tree representation

Fig. 3: Illustration of the supremum of two series
of nested partitions.

c d
1

3
5

(a) X

e f
2

8
9

(b) Y

c de f
3
4

1

5

2

6
9

(c) J = join (X , Y)

Fig. 4: Join of X and Y given their common
neighborhood {{d, f}, {c, e}} of ranks 6 and 4.

either included in a region of X [λ] or is included
in V \gr(X [λ]).

Let X be insertable in Y. The insertion of X
into Y is the hierarchy Z, such that, for any λ
in {0, . . . , ℓ}, Z[λ] = X [λ] ∪ {R ∈ Y[λ] | R ∩
gr(X [λ]) = ∅}. The insertion of X into Y is
denoted by insert(X , Y).

The insert operation is illustrated on Figure 5.
We can see that X is insertable into Y because

6



i) the two rightmost leaves of Y are included
in V \gr(X [λ]) and ii) every other region of Y is
included into a regions of X at the same scale.
As a result, the region V of Y is discarded in Z
because V ∩gr(X [5]) ̸= ∅ (gr(X [6]) highlighted in
red).

X

U

Y Z = insert(X , Y)

Fig. 5: Insertion of X into Y to obtain Z. Each
region is represented by the vertices of the input
space included in this region in white. The region
U of Y at altitude 6 is discarded from Z because
of its non-null intersection with gr(X [6]) (high-
lighted in red).

4.3 Computing Distribution for
Generic Partitioning

In this section, we present a calculus to build the
distribution of the BPH over any complete par-
tition of the space, using the three select, insert,
and join operations. This calculus relies on the
construction of an intermediary structure that we
call a Global Border Tree (GBT). After presenting,
this calculus, we finish the section with a counter
example showing the limitation of this approach
for certain out-of-core computation contexts.

We denote by δ• the operator that maps any
subset F of E to the subset of V made of every
vertex of V that belongs to an edge in F , i.e.,
δ•(F ) = ∪F .

Let A and B be any two subsets of V . We set
γ•

B(A) = δ•(γ(A, B)) ∩ A. In other words, γ•
B(A)

contains every vertex in A which is adjacent to a

vertex in B. If A is a subset of B, the set γ•
V \A(A)

is called the (internal) border of A.

Definition 6 (Global Border Tree). Let P be a
complete partition on V , and let H be a hierar-
chy on V . Let F be the set made of every vertex
which belongs to the border of a region of P:
F = ∪{γ•

V \R(R) | R ∈ P}. The Global Border
Tree of H over P is the hierarchy select (F, H).

A detailed algorithm to build the global bor-
der tree associated with a partition P of V into
tiles and to an ordering ≺ on the edges of G is
presented in Algorithm 1. Intuitively, this algo-
rithm aims at building the (local) BPH associated
with each tile in P (line 4), selecting the bor-
der of each tile in these local BPH (line 5), and
incrementally joining them together to form the
global border tree (line 6). In order to build the
local BPH, we call the algorithm presented in [4],
hereafter denoted by PWK. The detailed algo-
rithms to compute the results of join and selection
operations are described in Section 5.

Algorithm 1: Global Border Tree
Data: A graph (V, E), a total order ≺

on E, and a
partition P = {S0, . . . , Sk} of V

Result: The global border tree Mk of B≺

over P, and the set {B≺
i , . . . , B≺

k }
of partial BPH associated to the
tiles of P.

1 Call PWK algorithm to compute B≺
S0

2 M0 := select
(

γ•
V \S0

(S0), B≺
S0

)
3 foreach i from 1 to k do
4 Call PWK algorithm to compute B≺

Si

5 S := select
(

γ•
V \Si

(Si), B≺
Si

)
6 Mi := join (S, Mi−1)

At each step i, we compute S being the border
tree of the partial hierarchy of index i (line 5).
Consequently, Mi is the partial global border tree
computed on ∪i

j=0 {Sj} so

Mi = select
(

F, B≺
∪{Sj | j∈{0,...i}}

)

7



with F =
i⋃

j=0

{
γ•

V \Sj
(Sj)

}
This latter is obtained by calling join on Mi-1

and S on line 6.

Property 7. Let P = (S0, . . . , Sk) be a complete
partition of V , let H be a hierarchy on V , and
let M be the GBT of H over P. In Algorithm 2,
Mk = M.

Let us now present Algorithm 2 that allows one
to obtain the distribution of the BPH, using the
global border tree as an intermediary datastruc-
ture. Algorithm 2 starts by computing the global
border tree and the partial BPHs associated with
the tiles of the space by calling Algorithm 1. Then,
the tiles are browsed (line 2) and, for each of
them, we select its border in the global border
tree (line 3) before inserting this selection in the
partial BPH associated with the given tile (line 4).

Algorithm 2: GBT-based distributed
BPH

Data: A graph (V, E), a total order ≺
on E, and a
partition P = {S0, . . . , Sk} of V .

Result: The distribution {B0, . . . , Bk} of
the BPH B≺

V over P.
1 Call Algorithm 1 to compute the GBT M

and the set {B≺
S0

, . . . , B≺
Sk

} of partial
BPH associated to the tiles of P

2 foreach i from 0 to k do
3 S := select

(
γ•

V \Si
(Si), M

)
4 Bi := insert(S, B≺

i )

It is noteworthy that the number of calls to
the three operations remains linear with respect
to the number of tiles in the partition of the space.

Another notable property is that this cal-
culation scheme remains valid regardless of the
partition of the space and the order in which tiles
are considered as long as the borders and common
neighborhoods of two tiles are known. This com-
putation is also valid as long as, for each tile, we
can store in the principal memory of the computer
the triplet formed by the global border tree M,

the partial BPH B≺
i , and the element Bi of the

distribution associated with the given tile.
Despite these advantageous characteristics,

this computation has the drawback of requiring
to load in memory the global border tree which,
in some particular cases, can grow arbitrarily. In
the context of out-of-core computation, a desir-
able characteristic would be that the amount of
memory necessary to a given step of the algo-
rithm is bounded. In other words, one may wish
that the number of regions of S, B≺

i , and M does
not exceed the size of Bi, the element of the
distribution associated with the i-th tile of the
partition. By the very construction presented in
Algorithm 2, it can be seen that S and B≺

Si
are

always smaller than Bi. However, unfortunately,
this is not the case of M, which can be larger
than Bi and larger than the union of multiple
elements of the distribution as shown by the fol-
lowing counterexample. We will see in the next
section that if we consider a particular partition of
the space, called a causal partition, then a second
algorithm to compute the distribution of a BPH
can be proposed for which this situation cannot
occur, i.e., in this case, the size of the datas-
tructure needed at each computation step never
exceeds the size of two consecutive elements of the
resulting distribution.

Counterexample 1. Let us consider the set
V = {x0, . . . , x7} of vertices and the edges
E = {{xi, xi+1} | i ∈ {0, . . . 7}} ordered such
that {x0, x1} ≺ {x1, x2} ≺ . . . ≺ {x6, x7}.
The BPH for this ordering ≺ is the hierar-
chy H = (H[0], . . . , H[6]) such that H[0] =
{{xi} | i ∈ {0, . . . , 7}} and H[7] = V , and such
that, for any λ ∈ {1, . . . , 6}, we have:

H[λ] = {eλ91}
∪ {{xi} | i ∈ {λ + 1, . . . , 7}}

(1)

where

eλ = {xi | i ∈ {0, . . . , λ + 1}} (2)
A representation of H is shown in Figure 6. Let
P be the partition of V such that

8



P = {P0 = {x0, x1}, P1 = {x2, x3},

P2 = {x4, x5}, P3 = {x6, x7}}
(3)

The distribution of H over P (represented
on Figure 6) is the set of hierarchies

{Li = select (Pi, H) | i ∈ {0, . . . , 3}} (4)

whose region sets are

R(L0) = {{x0}, {x1}, e0, . . . , e6} (5)
R(L1) = {{x2}, {x3}, e1, . . . , e6} (6)
R(L2) = {{x4}, {x5}, e3, . . . , e6} (7)
R(L3) = {{x6}, {x7}, e5, . . . , e6} (8)

The GBT M (highlighted in bold blue in
Figure 6) contains the following regions.

R(M) = {{x1}, {x2}, {x3}, {x4}, {x5},

{x6}, e0, e1, e2, e3, e4, e5, e6}
(9)

We can indeed see that R(M) contains 13
regions which are greater than the number of
regions in L3 (since |R(L3)| = 4). We can fur-
ther observe that the number of regions in M
(in blue on the figure below) is greater than the
sum of the number of regions in the two consec-
utive elements L2 and L3 of the distribution.
Indeed, |R(L2)| + |R(L3)| = 6 + 4 = 10.

6
5
4
3
2
1

e6

x0

e5
e4

e3
e2

e1
e0
x1 x2 x3 x4 x5 x6 x7

Fig. 6: Illustration of Counterexample 1. The
partition of the space {x0, . . . , x7} into 4 tiles
is represented by the black rectangles, the BPH
is represented by the black and blue tree while
the GBT is highlighted in bold blue.

4.4 Computing Distribution on
Causal Partitions

In this section, we recall the principle of the out-
of-core calculus of the distribution of the BPH
over a causal partition introduced in [26]. The
presented workflow is designed to limit the size
of the data structures simultaneously present in
memory. We ensure that at each stage the size of
the computed structure is bounded by the size of
neighboring elements of the distribution.

In the following, we consider the special case
of a 4-adjacency graph representing a 2d image
that can be divided into slices. It should be noted
that this is not a limiting factor, and the method
can easily be adapted to any regular grid graph
such as 6 adjacency for 3d images considered in
Section 4.

Let h and w be two integers representing the
height and the width of an image. In the following,
the set V is the Cartesian product of {0, . . . , h 9
1} × {0, . . . , w 9 1}. Thus, any element x of V is
a pair x = (xi, xj) such that xi and xj are the
coordinates of x. With the 4-adjacency relation,
the set E of edges is equal to {{x, y} ∈ V | |xi −
yi| + |xj − yj | ≤ 1}.

Let k be a positive integer, the causal partition
of V (into k slices) is the sequence (S0, . . . , Sk)
such that for any t in {0, . . . , k}, St = {(i, j) ∈
V | t × h

k ≤ i < (t + 1) × h
k , 0 ≤ j < w}. Any

element of a causal partition mathbfP is called a
slice of P.

The major advantage of considering this spe-
cific partition is that due to its linear nature, any

9



slice of index k has at most two neighboring slices,
namely the slices of index k+1 and k 9 1.

Given any causal partition P of V , Algo-
rithm 3 allows computing the distribution of the
BPH B≺ over P.

This algorithm can be divided in two parts: a
causal and an anti-causal traversal of the slices.
Each of these parts relies on the same idea. First,
start with the causal traversal. Given a causal par-
tition of V into k + 1 slices, for any i in {0, . . . , k}
compute the BPH on Si with a call to the algo-
rithm PWK (line 3). Then, for any i in {1, . . . , k}
select the part of this hierarchy containing the
vertices adjacent to the previous slice and join
it with the part of the hierarchy associated with
the previous slice containing the vertices adja-
cent to the current slice, leading to the “merged
tree” denoted by M↑

i (line 4). The merged tree is
then inserted in the current BPH which gives B↑

i

(line 5). The hierarchies B↑
i associated with slice i

misses the information located in slices of higher
indices, and consequently only the last local hier-
archy B↑

k belongs to the distribution, i.e., B↑
k =

select (Sk, H).
In order to compute the whole distribution,

and after having spread information in the causal
direction, information must be back propagated
in the reverse anti-causal direction so that each
local hierarchy is enriched with the global context
(lines 7 to 9). At each step i, we construct a new
merged tree M↓

i between each pair of neighbor-
ing hierarchies, which this time takes into account
all the information present in the input data.
This merged tree is then inserted into B↑

i to form
B↓

i , which as shown in [26] is the element of the
distribution associated with the slice Si: B↓

i =
select (Si, B≺).

The next lemma, which can be deduced from
Theorem 17 of [26] and Definition 5, shows that
the intermediary datastructures M↑

i and M↓
i

of Algorithm 3 can be expressed in a way sim-
ilar to the intermediary datastructures Mi and
M of Algorithms 1 and 2. Then, this allows us to
compare these intermediary datastructures and to
deduce notably that the intermediary datastruc-
tures of Algorithm 3 are always smaller than those
of Algorithms 1 and 2 (see Property 10).

Lemma 8. Let (S0, . . . , Sk) be a causal parti-
tion of V . Let i be any element in {1, . . . , k}. The
following statements hold true:

1. M↑
i = select

(
δ•(γ(Si-1, Si)), B≺

∪{Sj | j∈{0,...i}}

)
;

2. M↓
i = select (δ•(γ(Si-1, Si)), B≺

V ).

From Lemma 8, we deduce the following prop-
erty which states that the intermediary datastruc-
tures of Algorithm 3 are subparts of those of
Algorithms 1 and 2.

Property 9. Let P = (S0, . . . , Sk) be a causal
partition of V . Let i be any element in {0, . . . , k}.
Let M be the Global Border Tree built on V over P
and Mi be the Global Border Tree on ∪i

j=0 {Sj}.
Then, we have M↑

i ⊑ Mi and M↓
i ⊑ M.

By considering Property 9, we can derive
some important implications regarding the sizes
of certain components within the GBT structures.

Corollary 10. The sizes of the merged trees
computed in Algorithm 3 are bounded as follows:

max
1≤i≤k

|M↑
i | ≤ max

1≤i≤k
|Mi|

max
1≤i≤k

|M↓
i | ≤ |M|

The proofs of Property 9 and Corollary 10 are
given in Appendix B, and Appendix C respec-
tively.

The next property, which is the main result of
this section, establishes that the size of the inter-
mediary datastructures of Algorithm 3 is, at each
step of the algorithm, smaller than the size of the
datastructures that we seek to build at this step:
in the step involving the construction of the ele-
ment B≺

i of the distribution of the BPH, the size
of the auxiliary datastructures never exceeds the
size of the two consecutive elements B≺

i−1 and B≺
i .

We recall that, as shown by Counterexample 1.

Property 11. Let (S0, . . . , Sk) be a causal par-
tition of V and let H be the BPH built on V .
Let i be any element in {1, . . . , k}. Given ni =
|select (Si91, H)| +|select (Si, H)|, we have |M↑

i | ≤
ni and |M↓

i | ≤ ni.

10



Algorithm 3: Out-of-core binary partition hierarchy for causal partitioning [26].
Data: A graph (V, E), a total order ≺ on E, and a causal partition P = (S0, . . . , Sk) of V

Result: The distribution (B↓
0 , . . . , B↓

k) of the BPH B≺
V over P.

1 B↑
0 := B≺

S0
// call PWK algorithm

2 foreach i from 1 to k do // Causal traversal of the slices

3 Call PWK algorithm to compute B≺
Si

4 M↑
i := join

(
select

(
γ•

Si
(Si-1), B↑

i-1

)
, select

(
γ•

Si-1
(Si), B≺

Si

))
5 B↑

i := insert(select
(

γ•
Si-1

(Si), M↑
i

)
, B≺

Si
)

6 B↓
k := B↑

k; M↓
k := M↑

k

7 foreach i from k − 1 to 0 do // Anticausal traversal of the slices

8 B↓
i := insert(select

(
γ•

Si+1
(Si), M↓

i+1

)
, B↑

i )

9 if i > 0 then M↓
i := insert(select

(
γ•

Si-1
(Si), B↓

i

)
, M↑

i )

6
5
4
3
2
1

e6

x0

e5
e4

e3
e2

e1
e0
x1 x2 x3 x4 x5 x6 x7

Fig. 7: Given a partition of the space in 4 slices,
the BPH in black and the merged tree of the last
two slices in bold blue.

Property 11 does not hold true in general when
using Algorithms 1 and 2. A proof is given in
Appendix D.

An insight into the proof of this property is
observed in Figure 7. We can see the merged tree
for the last two slices in bold blue which contains
5 nodes: 2 leaves and 3 non-leaf nodes. As a recall,
the GBT associated with the very same BPH and
partition presented in Figure 6 contains 13 nodes:
6 leaves and 7 non-leaf nodes. Then, the number
of regions in the GBT is comparable to that of the
entire BPH (15 nodes) while the merged tree is
closer, in size, to a subtree of the BPH associated
with one of its neighboring tiles.

Hence, unlike the calculation described in the
previous section, only the information associated
with two neighboring tiles is required at each
stage. The merged tree computed at each iteration

of both causal an anti-causal traversal is system-
atically smaller than equal to the GBT (strictly
smaller when |P| > 2). This makes this algo-
rithm a more scalable method than the previous
approach, at the cost of a higher number of steps.
These practical considerations are addressed in
Section 6.

5 Data Structures and
Algorithms

In this section, we present algorithms for of select,
join and insert operations. We first introduce
the main data structures before presenting the
algorithms.

5.1 Data Structures
In this section, we present the data structures used
in the algorithms defined in the following sections.
These data structures are designed to contain only
the necessary and sufficient information so that
we never need to have all the data in the main
memory at once. The data structure representing
a local hierarchy H assumes that the nodes of the
hierarchy are indexed in a particular order and
relies on three “attributes”: 1) a mapping of the
indices from the local context (a given slice) to
the global one (the whole graph) noted H.map, 2)
the parent array denoted by H.par encoding the
parent relation between the tree nodes, and 3) an
array H.weights giving, for each non-leaf-node of

11



the tree, the weight of its corresponding building
edge.

More precisely, given a binary partition hier-
archy H with n regions, every integer between 0
and n-1 is associated with a unique region of H.
Moreover, this indexing of the regions of H follows
a topological order such that:

1. Any leaf region is indexed before any non-leaf
region;

2. Two leaf regions {x} and {y} are sorted with
respect to an arbitrary order on the ele-
ment V . In practice, we use the raster scan
order of the pixels. Thus, {x} has an index
lower than {y} if x is before y with respect
to the raster scan order;

3. Two non-leaf regions are sorted according to
their rank, i.e., the order of their building
edges for ≺.

This order can be seen as an extension of the
order ≺ on E to the set V ∪ E that enables
1) to efficiently browse the nodes of a hierarchy
according to their scale of appearance in the hier-
archy and 2) to efficiently match regions of V with
the leaves of the hierarchy. By abuse of notation,
this extended order is also denoted by ≺ in the
following.

To keep track of the global context, a link
between the indices in the local tree and the global
indices in the whole graph is stored in the form of
an array map which associates: 1) to the index i
of any leaf region R, the vertex x of the graph G
such that R = {x}, i.e., map[i]=x, and 2) to the
index i of any non-leaf region R, its building edge,
i.e., map[i]=µ≺(R).

The parent relation of the hierarchy is stored
thanks to an array par such that par[i]=j if the
region of index j is the parent of the region of
index i.

The binary partition hierarchy is built for a
particular ordering ≺ of the edges of G. In prac-
tice, this ordering is induced by weights computed
over the edges of G. To this end, we store an array
weights of size |R⋆(H)|, i.e., the number of non-
leaf regions, elements such that, for every region R
in R⋆(H) of index i, weights[i] is the weight of
the building edge µ≺(R) of region R. The edges
can then be compared according to the following
total order induced by the weights: we set u ≺ v
if the weight of u is less than the one of v or if
u and v have equal weights but u comes before v
with respect to the raster scan order.

5.2 Select
In this part, we give Algorithm 4 to compute the
result of the select operation. This operation con-
sists in “selecting” all regions of a given hierarchy
H intersecting a subset X of the space.

Select algorithm proceeds in 3 steps:
1. Lines 5-9. Mark any leaf-node of H that

corresponds to an element of X, i.e., any
leaf-region {x} with x ∈ X;

2. Lines 11-15. Traverse the hierarchy from
leaves to root and mark any node that is a
parent of a marked node; computing its new
index in the output hierarchy with sNodeIdx;

3. Lines 18-24. Build the hierarchy S whose
nodes are the marked nodes of H.

Algorithm 4: select
Data: A hierarchy H, a subset X of V

1 . Result: The hierarchy S = select (X, H)
2 . Initialize an array sNodeIdx to -1 for

every region of H
3 i := 0 // i iterates over X

4 j := 0 // j over the leaves of H

5 while i < |X| and j < |H.leaves| do
6 if X[i] = H.map[j] then
7 sNodeIdx[j] := 0
8 i := i + 1
9 j := j + 1

10 count := 0
11 foreach n from 0 to |H|-2 do
12 if sNodeIdx[n] ̸= -1 then
13 sNodeIdx[n] := count
14 sNodeIdx[H.par[n]] := 0
15 count := count + 1

16 sNodeIdx[H.root] := count
17 nS := 0
18 foreach n from 0 to |H|-1 do
19 if sNodeIdx[n] ̸= - then
20 S.par[nS ] := sNodeIdx[H.par[n]]
21 S.map[nS ] := H.map[n]
22 if n ∈ R⋆(H) then
23 S.weight[nS − |X|] :=

H.weight[nS − |H.leaves|]

24 nS := nS + 1
25 return S

12



In Algorithm 4, we assume that X is sorted
and that X ⊆ gr(H), which is always the case
in Algorithm 3. For each element X[i] of X, we
search for the index j of a leaf of H mapped
to X[i], i.e., such that H.map[j] = X[i]. To this
end, it is necessary to make a traversal of the
leaves of H. As mentioned before, the leaves corre-
spond to the first indices by construction. The first
step can then be performed in linear time with
respect to the number of leaf regions of H. The
second step consist in traversing the whole hier-
archy from leaves to root in order to mark every
region of H which belongs to select (X, H) i.e.,
regions parent of a marked one. The complexity
of this step is therefore linear with respect to the
number of regions of H. Finally, the last step boils
down to extracting the hierarchy select (X, H)
from the marked nodes. For this, a new hierarchy
is created by traversing H again. As the traversal
is done by increasing order of index, the proper-
ties relating to the weights of the building edges
and order of appearance of regions are preserved.
The complexity of this last step is linear with
respect to the number of regions of H. Thus, Algo-
rithm 4 has a linear O(n) complexity, where n is
the number of regions of H.

5.3 Join
Intuitively, this operation merges two hierarchies
according to their common neighborhood, that is
the set of edges linking their grounds. In [23], the
authors proposed an algorithm that can be used
to successively add edges of the common neigh-
borhood at their correct rank. Essentially, this
involves updating the hierarchy by traversing the
branches associated with the endpoints of each
added edge. The worst-case complexity is then
linear with respect to the size of the hierarchy
for adding a single edge. Thus, the overall com-
plexity of such join procedure would be O(kn)
where n is the number of region of the consid-
ered hierarchies and k is the number of edges
in the common neighborhood. In this section, we
drop the multiplicative dependency in the size
of the neighborhood F at the cost of introduc-
ing a sorting of F and we present an algorithm
whose complexity is quasi-linear with respect to
the size n of the hierarchies and linearithmic with
respect to the number k of edges in F .

Algorithm 5: Join
Data: Two hierarchies X and Y, the

common neighborhood F of gr(X )
and gr(Y).

Result: A collection QD = join (X , Y)
1 foreach node ni of X do QD.MakeSet(i)
2 foreach node ni of Y do
3 QD.MakeSet(i + |X .leaves|)
4 aDescendent(X , 0)
5 aDescendent(Y, |X .leaves|)
6 F :=sort(F )
7 ix := |X .leaves|; iy := |Y.leaves|; if := 0
8 while ix < |X | or iy < |Y| or if < |F | do
9 if F [if ] ≺ X .map[ix]

and F [if ] ≺ Y.map[iy] then
10 (x, y) := F [if ]
11 m := F [if ]
12 w := weight(F [if ]); if += 1
13 else if X .map[ix] ≺ Y.map[iy] then
14 (x, y) := X .desc[ix]
15 m := X .map[ix]
16 w := X .weight[ix]; ix += 1
17 else
18 (x, y) := Y.desc[iy]
19 m := Y.map[iy]
20 w := Y.weight[iy]; iy += 1
21 cx := QD.FindCanonical(x)
22 cy := QD.FindCanonical(y)
23 if cx ̸= cy then
24 n := QD.Union(cx, cy);
25 QD.map[n] := m
26 QD.weight[n − (|X .leaves| +

|Y.leaves|)] := w

A detailed presentation of the proposed algo-
rithm is given in Algorithm 5 which calls auxiliary
functions presented in Algorithm 6. Intuitively, in
order to compute the join of two hierarchies X
and Y, Algorithm 5 consists in “emulating” PWK
algorithm on the graph obtained from (i) the edges
associated with the non-leaf nodes of X and of Y
and (ii) the edges in the common neighborhood F
of X and Y. Therefore, all these edges are con-
sidered in increasing order with respect to ≺ and,
for each edge, it is decided if this edge must be
considered or not in the creation process of the
join hierarchy. The decision is made based on

13



the potential creation of a cycle if this edge was
added during the minimum spanning tree creation
process.

A main observation can be made to highlight
the difference between the situation encountered
in the contexts of join algorithm and PWK algo-
rithm: in the context of join, some edges, which
are associated to the nodes of the hierarchies X
and Y, are made of vertices that do not belong
to the underlying space (i.e., the common neigh-
borhood of the slices supporting the grounds of X
and Y).

To process them, we compute a pair attribute
desc for each non-leaf nodes of X and Y. Roughly
speaking, this attribute assigns a source and tar-
get vertex to each of these edges. For a given node,
the source is determined as a leaf of the subtree
rooted in its first child (arbitrarily chosen), whose
map necessarily refers to a node of the underly-
ing space. On the other hand, the target is either
another a leaf of the subtree rooted in its sec-
ond child or, alternatively, assigned a value of -1
in cases where the node has only one child (e.g.,
region of X of rank 4 in Figure 2)

When such edge is found, the standard algo-
rithm can be shortcut leading to a modified ver-
sion of the PWK auxiliary functions presented in
Algorithm 6 at line 12. This test detects the edges
for which a shortcut must occur based on the value
of desc. Indeed, if the target of an edge is equal to
-1, no cycle can be created. As a result, the node is
added as the parent of the canonical element asso-
ciated with the source of this edge. This attribute
is pre-computed for every node of X and of Y by
the auxiliary function aDescendent Overall, the
following steps are performed in Algorithm 5:

• Lines 1-3. Initialize the Union-find data
structures;

• Lines 4-5. Compute the attribute desc for
both X and Y;

• Lines 6 to 20. Browse the edges in increas-
ing order. Observe that it implies sorting
the edges in the common neighborhood F
of X and Y in increasing order for ≺ (non-
leaf nodes of X and Y are already sorted by
construction);

• Lines 23-26 Apply PWK steps, calling the
modified version of the auxiliary functions.

The first step complexity is linear with respect
to the number of elements of gr(X ) ∪ gr(Y).
The second step uses the auxiliary function

Algorithm 6: Auxiliary functions
for join algorithm

// The functions called hereafter on QT and QBT

are those described in [4]

1 Procedure QD.MakeSet(q)
2 QD.Root[q] := q
3 QBT .MakeSet(q)
4 QT .MakeSet(q)
5

6 Function QD.F indCanonical(q)
7 return QT .F indCanonical(q)
8

9 Function QD.Union(cx, cy)
10 tu := QD.Root[cx]
11 QBT .par[tu] := QBT.size
12 if cy = −1 then

QD.Root[cx] := QBT .size
13 else
14 tv := QD.Root[cy]
15 QBT .par[tv] := QD.size
16 c := QT .Union(cx, cy)
17 QD.Root[c] := QBT .size

18 end
19 QBT .MakeSet(QBT .size)
20 return QD.size − 1
21

22 Function aDescendent(H, s)
23 foreach node n of H do

H.desc[n]:= (−1, −1)
24 foreach leaf node n of H do

H.desc[n].first:= n + s
25 foreach non-root non-leaf node n of

H in increasing order for ≺ do
26 p := H.par[n]
27 if H.desc[p].first= −1 then

H.desc[p].first:= H.desc[n].first
28 else

H.desc[p].second:= H.desc[n].first
29 end

aDescendent to compute attributes desc for
both X and Y consisting in a leaves to root traver-
sal which gives a linear complexity with respect to
the number of regions of each hierarchy. It should
be noted that this last function takes a parameter
shift which allows to index the leaves of the sec-
ond hierarchy after those of the first. Third step
requires to sort the edges of F with respect to ≺

14



Algorithm 7: Insert
Data: Two hierarchies X and Y such that X insertable into Y.
Result: Z: the hierarchy insert(X , Y)

1 x := 0; y := 0; z := 0; // indices for the nodes/regions of X , Y, and Z

2 Initialize an array InZ of |Y| Booleans to true (resp. to false) for every leaf (resp. non-leaf)
region of Y
while x < |X | or y < |Y| do

3 if x < |X | and y < |Y| and X .map[x] = Y.map[y] then
// Duplicate region (x, y) found in X and Y, keep (and renumber) it in Z

4 CX →Z [x] := z; CY→Z [y] := z; CZ→X ,Y [z] := (x, y)
5 x += 1; y += 1; z += 1
6 else if Y.map[y] ≺ X .map[x] then
7 if InZ[y] = true then // Keep (and renumber) region y in Z

8 InZ[Y.par[y]] := true
9 CY→Z [y] := z; CZ→X ,Y [z] := (−1, y)

10 y += 1; z += 1
11 else y += 1 // Discard region y from Z

12 else // Keep (and renumber) region x in Z

13 CX →Z [x] := z; CZ→X ,Y [z] := (x, −1)
14 x += 1; z += 1

15 Z := initialize a tree structure with nZ = z nodes
16 foreach z from 0 to nZ do
17 (x, y) := CZ→X ,Y [z]
18 if x ̸= −1 then
19 Z.map[z] := X .map[x]
20 if [x] = X .root then Z.par[z] := z
21 else Z.par[z] := CX →Z [X .par[x]]
22 if z ≥ |X .leaves| then Z.weight[z − |X .leaves|] := X .weight[x − |X .leaves|]
23 else
24 Z.map[z] := Y.map[y]
25 if y = Y.root then Z.par[z] := z
26 else Z.par[z] := CY→Z [Y.par[y]]
27 if z ≥ |Y.leaves| then Z.weight[z − |Y.leaves|] := Y.weight[x − |Y.leaves|]

before browsing the edges which implies a com-
plexity of O(k × log(k) + |X | + |Y|) with k the
number of edges in F . The fourth step is equiv-
alent to PWK algorithm in terms of complexity.
Then, its complexity is O(m × α(n)) where m is
sum of the number of edges in F and the num-
ber of non-leaf nodes of X and Y, where n is the
number of leaf nodes in X and Y and where α()
is the inverse Ackermann function which grows
sub-logarithmically.

5.4 Insert
In this part, we present Algorithm 7. The opera-
tion insert aims to enrich a hierarchy Y by insert-
ing the regions of another hierarchy X by com-
puting a new hierarchy Z = insert(X , Y) (called
the insertion of X into Y). Regions within X are
inserted at the correct rank in the output hierar-
chy, and some regions of Y are discriminated and
discarded from the output hierarchy.

As stated in Definition 5, X must be insertable
into Y; this assumption holds true at each call to
insert in Algorithm 2 and Algorithm 3.

15



From a high-level point of view, insert algo-
rithm proceeds in two main steps:

1. Lines 2-14. Identify and renumber the
regions of X and Y that belong to Z and store
the correspondences between the new num-
ber of the regions in Z and the indices of the
initial regions in X and Y. It can be observed
that this step is necessary since a region of Z
can be duplicated in both X and Y and that
some regions of Y are discarded from Z.
In order to perform this step, the regions
of X and Y are simultaneously browsed in
increasing order for ≺. The correspondences
between the regions of the hierarchies are
stored in three arrays: CX →Z , CY→Z , and
CZ→X ,Y ;

2. Lines 16-27. Build the parenthood relation
(par) of the hierarchy Z using the parent-
hood relation of the hierarchies X and Y
and the correspondences between the regions
of the hierarchies. At the same time, we
also build the attributes map and weight
associated with Z.

During the first step, each region of the two
hierarchies X and Y is considered once and pro-
cessed with a limited number of constant-time
instructions. Thus, the overall time complexity of
Lines 2-14 is linear with respect to the number of
nodes of X and Y. The worst-case complexity of
the second step is also linear with respect to the
number of nodes of X and Y since Z contains at
most all regions of each of hierarchy. Thus, the
overall complexity of Algorithm 7 is O(|X | + |Y|).

6 Experiments
In this section, we assess the performances of
our framework over 3D 8-bit images. We conduct
a comparative analysis of various computation
patterns and partitioning strategies. The exper-
iments are executed on a workstation equipped
with an Intel Xeon processor running at 3.90GHz
and 256GB RAM. Processed images are stored
in HDF5 format [38] to facilitate tiled reading
while intermediate and output data structures
are managed through Zarr [39] using the Blosc
compressor.

The experiments are conducted on real images,
specifically a FIB-SEM volume of the CA1 hip-
pocampus region of the brain with dimensions

2048 × 1536 × 1065 (approximately 3.3 gigavox-
els) [40]. It should be noted that it is not possible
to run the classic algorithm for this size of vol-
ume on the workstation on which we carried out
the experiments. At least 8 slices are needed to be
able to compute the distribution.

0.5 1.0 1.5 2.0 2.5 3.0
Image size (GB)

0

50

100

150

200

250

M
em

or
y

(G
B

)

Incore
w=128
w=64
w=16

(a) Peak Memory Consumption

0.5 1.0 1.5 2.0 2.5 3.0
Image size (GB)

0

100

200

300

Ti
m

e
(m

in
)

(b) Execution Time

Fig. 8: Comparative analysis of peak memory
consumption and execution time between the In-
Core algorithm and the out-of-core causal given
as a function of the image size. The variable w
correspond to the slice width.

The first experiment consists of selecting sev-
eral subsets of the test image of increasing size
in order to observe memory consumption trends
relative to the size of the input image. In this
way, we can compare the in-core algorithm and
the calculation of the distribution with the causal
algorithm presented in Algorithm 3 varying size
and number of tiles. Indeed, in Figure 8 the first

16



20 40 60 80
Number of slices

90

100

110

120

130

M
em

or
y

(G
B

)

(a) Peak memory consumption

20 40 60 80
Number of slices

0

50

100

150

200

E
xe

cu
tio

n
tim

e
(m

in
)

Causal
Causal GBT
Grid GBT

(b) Execution time

20 40 60 80
Number of slices

0.8

1.0

1.2

1.4

N
um

be
ro

fr
eg

io
ns
×

10
9

Causal
Causal GBT
Grid GBT
Local hierarchy

(c) Region count

8 24 40 54 80
Number of slices

0

50

100

150

200

E
xe

cu
tio

n
tim

e
(m

in
)

BPH
Insert
Join
Select

IO
Causal
Causal GBT
Grid GBT

(d) Core operations timings

Fig. 9: Comparative analysis across different computation patterns on FIB-SEM volume as a function
of the number of slices.

data point on the green curve corresponds to a
causal partition of 2 tiles of 128 × 1536 × 1065
while for the orange curve this corresponds to 4
tiles with a width of 64 voxels, and for the red
curve 16 tiles with a width of 16 voxels. Then,
for each subsequent data point, the number of
slices is incremented by 1, 2, and 8, respectively.
Tendencies depicts the evident disparity in peak
memory utilization between the out-of-core and
in-core algorithms. Note that beyond 1.5GB, the
in-core algorithm cannot produce results.

While both algorithms demonstrate a linear
increase in memory consumption proportionate
to image size, the out-of-core algorithm’s slope
is 6.7 times lower as that of the conventional
in-core approach. Consequently, considering the
current workstation, the upper limit of image size
amenable to processing ascends from 1.5 GB to

10 GB with w=16. Moreover, we observe that
the peak memory consumption decreases as we
increase the number of slices.

In terms of execution times, it appears that,
as expected, the OOC calculation time is longer
than the in-core approach. However, the order of
magnitude remains similar. We can also see that
processing time increases with the number of tiles,
highlighting a trade-off between execution time
and memory consumption.

In the preceding experiment, we exclusively
utilized only one of the presented calculation
patterns. To compare them, we computed the dis-
tribution associated with the complete FIB-SEM
volume while incrementally increasing the num-
ber of tiles. In the Figure 9, Causal refers to
the high-level computation detailed Section 4.4,
Causal GBT represents the global border tree

17



approach detailed in Section 4.3 applied to a
causal image partitioning, and Grid GBT denotes
the same approach but within the context of grid
partitioning.

At first glance, the peak memory consump-
tion in Figure 9a decreases with the increasing
number of slices for all three methodologies. How-
ever, Causal GBT approach suffers from a sud-
den increase in memory consumption becoming
no longer competitive. This abrupt escalation in
memory consumption is due to the fast increase in
the GBT size, correlated with the number of voxel
at the interface between two tiles. In Figure 9c, we
can see that the number of regions of Causal GBT
quickly exceeds the average number of local hier-
archy regions. While the number of regions in a
local hierarchy decreases as a function of the num-
ber of slices, the number of regions in the global
border tree increases linearly.

In contrast, the grid partitioning method does
not exhibit such phenomenon in the first graph
because the slope of the Grid GBT size is much less
pronounced compared to Causal. As expected,
the size of the largest merged tree in for Causal
remains nearly constant regardless the number of
tiles. While an explosion in memory consumption
may occur for an excessive number of tiles, in the
Grid GBT, it is not the case for the Causal one,
which boasts superior scalability.

However, in Figure 9b, we can see that the
execution time of GBT-based approaches remains
systematically lower than the causal with an aver-
age speedup of 2 for Grid GBT. Therefore, this
algorithm is a good method for reducing compu-
tation time as long as the number of tiles remains
reasonable, which seems to be beneficial from an
application point of view in order to strike a
happy medium between memory consumption and
computation time.

This disparity in computation time between
the two GBT-based and Causal approaches can
be easily explained by considering the size of the
data structures and the number of calls to each
operation. In Figure 9d we present a comparison
of the the execution time of each core opera-
tion involved in the distribution computation. The
term “BPH” refers to Playing with Kruskal algo-
rithm [4], and IO encompasses both reading and
writing operations on disk.

Firstly, when contrasting Causal GBT with
Grid GBT, the only notable difference lies in join.

The steep slope observed in the Causal GBT
approach is a consequence of the rapid growth in
the size of the GBT, making the merging pro-
cess with a local border tree increasingly resource
intensive.

Secondly, Grid GBT outperforms Causal in
terms of execution time for each operations,
except for BPH. It is easy to see that, given the
methodology, the number of calls to insert, select
and IO is halved. Regarding join and select, the
performance improvement is also attributed to the
fact that in causal partitioning, the number of vox-
els at the interface grows linearly with the number
of tiles, while in grid partitioning, it is propor-
tional to the cubic root of the number of tiles as
illustrated in Figure 10.

(a) (b)

Fig. 10: Causal and grid partition into 16 tiles. It
is necessary to draw 16 frontiers (in red) for the
causal partition and only 9 for the grid partition
to reach the same number of slices.

7 Conclusion
In this article, we introduced two high-level cal-
culi for computing the distribution of the binary
partition hierarchy (BPH), which consists of col-
lections of subtrees of the BPH. The first calculus
is applicable to any partition of the space, while
the second is tailored specifically for causal par-
titions. Both calculi rely on three fundamental
algebraic operations on hierarchies—select, join,
and insert—which exhibit linear and linearithmic
complexities.

We also outlined the properties necessary to
ensure that the second calculus satisfies the out-
of-core constraints. Our experiments compared
these workflows, revealing that although the first

18



calculus lacks certain guarantees, it may still be
suitable for applications with a moderate num-
ber of slices. Looking ahead, we plan to develop
efficient algorithms for processing the distribution
of a BPH, with the goal of enhancing the out-
of-core toolkit by integrating hierarchical analysis
tools for (marked) watershed and hierarchical
watershed segmentation.

Acknowledgements
This work was supported by the French ANR
grant ANR-20-CE23-0019.

Appendix A Proof of
Property 7

Before proving Property 7, let us first introduce
some lemmas.

Lemma 12. Let A and B be two disjoint subsets
of V and let A′ and B′ be two subsets of A and
B, respectively, then we have:

select
(
A′ ∪ B′, B≺

A ⊔ B≺
B

)
= select

(
A′, B≺

A

)
⊔ select

(
B′, B≺

B

)

Lemma 13. Let A and B be two disjoint subsets
of V and Z be a set such as Z ∩ A ̸= ∅ and
Z ∩ B ̸= ∅. Then we have:
select (Z, join (B≺

A , B≺
B)) =

join (select (Z ∩ A, B≺
A), select (Z ∩ B, B≺

B))

Proof. (of Lemma 13) Let H =
select (Z, join (B≺

A , B≺
B)). We are

going to prove that H =
join (select (Z ∩ A, B≺

A), select (Z ∩ B, B≺
B)). We

have

H = select(Z, B≺
A ⊔ B≺

B ⊞ γ(A, B))
by definition of join

= select(Z, insert(select(Z, B≺
A ⊔ B≺

B ⊞ γ(A, B)),
B≺

A ⊔ B≺
B))

by Lemma 13 of [26]
= insert(select(Z, B≺

A ⊔ B≺
B ⊞ γ(A, B)),

select(Z, B≺
A ⊔ B≺

B))

by Lemma 12 of [26]
= select(Z, B≺

A ⊔ B≺
B) ⊞ γ(A, B)

⊔ select(Z, B≺
A ⊔ B≺

B)

From Property 7.3 of [26], we have

H = select
(
Z, B≺

A ⊔ B≺
B

)
⊔ select

(
Z, B≺

A ⊔ B≺
B

)
⊞ γ(A, B)

Since Z ∩A ⊆ A and Z ∩B ⊆ B, by Lemma 12
we deduce that:

H = select
(
Z ∩ A, B≺

A

)
⊔ select

(
Z ∩ B, B≺

B

)
⊞ γ(A, B)

= join
(
select

(
Z ∩ A, B≺

A

)
, select

(
Z ∩ B, B≺

B

))
by definition of join

At initialization step of Algorithm 1, we have
M0 = select

(
γ•

V \S0
(S0), B≺

S0

)
. Then at the first

iteration we have

M1 = join
(

select
(

γ•
V \S1

(S1), B≺
S1

))
(

select
(

γ•
V \S0

(S0), B≺
S0

))
= select(γ•

V \S0
(S0) ∪ γ•

V \S1
(S1),

join
(
B≺

S0
, B≺

S1

)
)

by Lemma 13

= select
(

γ•
V \S0

(S0) ∪ γ•
V \S1

(S1), B≺
S0∪S1

)
by Property 9 of [26]

By recurrence, we have

Mi = select
(

F, B≺
∪{Sj | j∈{0,...i}}

)
with F =

i⋃
j=0

{
γ•

V \Sj
(Sj)

}
Then, if we consider a partition into k + 1

regions, when i = k we have

19



Mk = select
(
F, B≺

V

)
with F =

k⋃
j=0

{
γ•

V \Sj
(Sj)

}
This latter rewriting fits Definition 6.

Appendix B Proof of
Lemma 8

Proof. (of statement 1) At each step of the
first loop of Algorithm 3, we have M↑ =
join

(
select

(
γ•

i (Si−1), B↑
i−1

)
, select

(
γ•

i−1(Si), B≺
Si

))
.

Theorem 17 of [26] states that B↑
i−1 =

select
(

Si, B≺
∪{Sj | j∈{0,...i}}

)
. Then, since

δ•(γ(Si-1, Si)) ∩ γ•
i (Si−1) ⊆ γ•

i (Si−1) and
δ•(γ(Si-1, Si)) ∩ γ•

i−1(Si) ⊆ γ•
i−1(Si), by

Lemma 13 we can deduce that M↑ =
select

(
δ•(γ(Si-1, Si)), B≺

∪{Sj | j∈{0,...i}}

)
Proof. (of statement 2) Let A, B and
C be three pairwise disjoint subsets of
V such that γ(A, C) = ∅. Let M↑ =
join (select (γ•

B(A), B≺
A), select (γ•

B(A), B≺
A)) and

M↓ = insert(select (γ•
B(A), B≺

A∪B∪C), M↑). Then
we have

M↓ = join(select
(
γ•

B(A), B≺
A

)
,

select
(
γ•

A(B), B≺
B∪C

)
)

by Lemma 15 of [26]
= select

(
γ•

B(A) ∪ γ•
A(B), join

(
B≺

A , B≺
B∪C

))
by Lemma 13

= select
(
γ•

B(A) ∪ γ•
A(B), B≺

A∪B∪C

)
by definition of join

Since γ•
B(A) ∪ γ•

A(B) = δ•(γ(A, B)), we have
M↓ = select (δ•(γ(A, B)), B≺

A∪B∪C).

Appendix C Proof of
Property 9

Proof. In order to establish Property 9, we first
introduce the following lemma:

Lemma 14. Let H be a BPH on V . Let A ⊆
V and B ⊆ V such that A ⊆ B. The we have
select (A, H) ⊑ select (B, H).

Then, we proceed in two steps:
(1) M↑

i ⊑ Mi; and
(2) M↓

i ⊑ M.
(1) As stated in Section 4.3, Mi built on P is

defined as follows

Mi = select
(

F, B≺
∪{Sj | j∈{0,...i}}

)
(C1)

where

F =
i⋃

j=0

{
γ•

V \Sj
(Sj)

}
(C2)

From the definition of δ•, γ and γ•, it can be
seen that

F =
i⋃

j=0

{
γ•

V \Sj
(Sj)

}
(C3)

=
i⋃

j=1
{δ•(γ(Sj-1, Sj))} (C4)

As stated in Property 8, we have

M↑
i = select

(
C, B≺

∪{Sj | j∈{0,...i}}

)
(C5)

where

C = δ•(γ(Si-1, Si)) (C6)
We can deduce that for any i ∈ {1, . . . , k} we

have C ⊆ F . Therefore, given Lemma 14 we have
M↑

i ⊑ Mi.
(2) For this second statement, we can express

M and Mi with C from Equation (C6) and F
from Equation (C4).

M = select
(
F, B≺

V

)
(C7)

M↓
i = select

(
C, B≺

V

)
(C8)

We have C ⊆ F , and with Lemma 14 we have
M↓ ⊑ M.

20



Appendix D Proof of
Property 11

Proof. Given ni = |select (Si91, H)| +
|select (Si, H)|, we will prove statements of
Property 11 in the following order:

(1) |M↓
i | ≤ ni; and

(2) |M↑
i | ≤ ni.

(1) From Property 8, we have M↓
i =

select (F, H) where F = δ•(γ(Si-1, Si)).
We can see that F ⊆ (Si91 ∪ Si) which
gives us Equation (D9). Each region R of
select (Si91 ∪ Si, H) either intersects an element
of Si91 or Si or both. As a result, R belongs either
to select (Si91, H) or select (Si, H) or both. As a
result, we have Equation (D10).

|M↓
i | ≤ |select (Si91 ∪ Si, H)| (D9)

≤ |select (Si91, H)| + |select (Si, H)|
(D10)

(2) Given C = δ•(γ(Si91, Si)), we can write
the two structures as follows:

M↓
i = select

(
C, B≺

V

)
(D11)

M↑ = select
(

C, B≺
∪{Sj | j∈{0,...k}}

)
(D12)

Considering Lemma 15, we have |M↑
i | ≤ |M↓

i |.
Thus we have |M↑

i | ≤ |M↓
i | ≤ ni

Lemma 15. Let (S0, . . . , Sk) be a causal partition
of V , A ⊆ V and u be a pair of distinct ele-
ments of V . For any i ∈ {0, . . . , k}, the following
inequalities holds true:

|select (A, H)| ≤ |select (A, H ⊞ {u})| (D13)

|select
(

X, B≺
∪{Sj | j∈{0,...i}}

)
| ≤ |select

(
X, B≺

V

)
|

(D14)

References
[1] Salembier, P., Garrido, L.: Binary partition

tree as an efficient representation for image
processing, segmentation, and information
retrieval. TIP 9(4), 561–576 (2000) https:
//doi.org/10.1109/83.841934

[2] Randrianasoa, J.F., Kurtz, C., Desjardin,
Passat, N.: Binary partition tree construc-
tion from multiple features for image seg-
mentation. Pattern Recognition 84, 237–
250 (2018) https://doi.org/10.1016/j.patcog.
2018.07.003

[3] Cousty, J., Najman, L., Perret, B.: Construc-
tive links between some morphological hier-
archies on edge-weighted graphs. In: ISMM,
pp. 86–97 (2013). https://doi.org/10.1007/
978-3-642-38294-9 8

[4] Najman, L., Cousty, J., Perret, B.: Playing
with Kruskal: algorithms for morphological
trees in edge-weighted graphs. In: ISMM,
pp. 135–146 (2013). https://doi.org/10.1007/
978-3-642-38294-9 12

[5] Meyer, F., Maragos, P.: Morphological scale-
space representation with levelings. In: Inter-
national Conference on Scale-Space Theories
in Computer Vision, pp. 187–198 (1999).
https://doi.org/10.1007/3-540-48236-9 17

[6] Meyer, F.: The dynamics of minima and con-
tours. In: ISMM, pp. 329–336 (1996). https:
//doi.org/10.1007/978-1-4613-0469-2 38

[7] Baum, D., Weaver, J.C., Zlotnikov, I.,
Knötel, D., Tomholt, L., Dean, M.N.: High-
Throughput Segmentation of Tiled Biologi-
cal Structures using Random-Walk Distance
Transforms. Integrative and Comparative
Biology 59(6), 1700–1712 (2019) https://doi.
org/10.1093/icb/icz117

[8] Soares, A.P., Baum, D., Hesse, B., Kup-
sch, A., Müller, B.R., Zaslansky, P.: Scatter-
ing and phase-contrast x-ray methods reveal
damage to glass fibers in endodontic posts
following dental bur trimming. Dental Mate-
rials 37(2), 201–211 (2021) https://doi.org/
10.1016/j.dental.2020.10.018

21

https://doi.org/10.1109/83.841934
https://doi.org/10.1109/83.841934
https://doi.org/10.1016/j.patcog.2018.07.003
https://doi.org/10.1016/j.patcog.2018.07.003
https://doi.org/10.1007/978-3-642-38294-9_8
https://doi.org/10.1007/978-3-642-38294-9_8
https://doi.org/10.1007/978-3-642-38294-9_12
https://doi.org/10.1007/978-3-642-38294-9_12
https://doi.org/10.1007/3-540-48236-9_17
https://doi.org/10.1007/978-1-4613-0469-2_38
https://doi.org/10.1007/978-1-4613-0469-2_38
https://doi.org/10.1093/icb/icz117
https://doi.org/10.1093/icb/icz117
https://doi.org/10.1016/j.dental.2020.10.018
https://doi.org/10.1016/j.dental.2020.10.018


[9] Paiva, P.V.V., Cogima, C.K., Dezen-
Kempter, E., Carvalho, M.A.G.: Historical
building point cloud segmentation com-
bining hierarchical watershed transform
and curvature analysis. Pattern Recogni-
tion Letters 135, 114–121 (2020) https:
//doi.org/10.1016/j.patrec.2020.04.010

[10] Le Moigne, B., Rault, C., Guiotte, F.,
Thomas, D.J., Dewez, T.: RIDIM: Unveil-
ing Rock Instabilities through Hierarchical
Segmentation of 3D Point Clouds. 14th Inter-
national Symposium on Landslides. Poster
(2024)

[11] K C, S., Aryal, J., Ryu, D.: Automated
delineation of the agricultural fields using
multi-task deep learning and optical satel-
lite imagery. In: IGARSS 2023 - 2023 IEEE
International Geoscience and Remote Sens-
ing Symposium, pp. 2795–2798 (2023).
https://doi.org/10.1109/IGARSS52108.
2023.10282141

[12] Maia, D.S., Pham, M.-T., Lefèvre, S.:
Watershed-based attribute profiles with
semantic prior knowledge for remote sens-
ing image analysis. IEEE Journal of Selected
Topics in Applied Earth Observations and
Remote Sensing 15, 2574–2591 (2022) https:
//doi.org/10.1109/JSTARS.2022.3153110

[13] Vitter, J.S.: External memory algorithms and
data structures: dealing with massive data.
ACM Comput. Surv. 33(2), 209–271 (2001)
https://doi.org/10.1145/384192.384193

[14] Wang, S., Zhang, M., Yang, K., Chen, K.,
Ma, S., Jiang, J., Wu, Y.: Noswalker: A
decoupled architecture for out-of-core ran-
dom walk processing. In: ACM Interna-
tional Conference on Architectural Support
for Programming Languages and Operat-
ing Systems, pp. 466–482. ACM, New York,
NY, USA (2023). https://doi.org/10.1145/
3582016.3582025

[15] Arge, L., Danner, A., Haverkort, H., Zeh, N.:
I/O-Efficient Hierarchical Watershed Decom-
position of Grid Terrain Models, pp. 825–844.
Springer, Berlin, Heidelberg (2006). https:
//doi.org/10.1007/3-540-35589-8 51

[16] Danner, A., Mølhave, T., Yi, K., Agar-
wal, P.K., Arge, L., Mitasova, H.: Ter-
rastream: From elevation data to water-
shed hierarchies. In: ACM Symposium on
Advances in Geographic Information Sys-
tems, pp. 212–219 (2007). https://doi.org/10.
1145/1341012.1341049

[17] Lindstrom, P., Pascucci, V.: Terrain sim-
plification simplified: a general framework
for view-dependent out-of-core visualiza-
tion. IEEE Transactions on Visualization
and Computer Graphics 8(3), 239–254
(2002) https://doi.org/10.1109/TVCG.2002.
1021577

[18] Toledo, S.: A survey of out-of-core algo-
rithms in numerical linear algebra, pp. 161–
179. American Mathematical Society, USA
(1999). https://doi.org/10.1090/dimacs/050

[19] Gazagnes, S., Wilkinson, M.H.F.: Dis-
tributed connected component filtering and
analysis in 2d and 3d tera-scale data sets.
IEEE Transactions on Image Processing 30,
3664–3675 (2021) https://doi.org/10.1109/
TIP.2021.3064223

[20] Götz, M., Cavallaro, G., Geraud, T.,
Book, M., Riedel, M.: Parallel computation
of component trees on distributed mem-
ory machines. TPDS 29(11), 2582–2598
(2018) https://doi.org/10.1109/TPDS.2018.
2829724

[21] Kazemier, J.J., Ouzounis, G.K., Wilkin-
son, M.H.: Connected morphological
attribute filters on distributed mem-
ory parallel machines. In: ISMM, pp.
357–368 (2017). https://doi.org/10.1007/
978-3-319-57240-6 29

[22] Gigli, L., Velasco-Forero, S., Marcotegui, B.:
On minimum spanning tree streaming for
hierarchical segmentation. PRL 138, 155–
162 (2020) https://doi.org/10.1016/j.patrec.
2020.07.006

[23] Havel, J., Merciol, F., Lefèvre, S.: Efficient
tree construction for multiscale image rep-
resentation and processing. JRTIP 16(4),
1129–1146 (2019) https://doi.org/10.1007/

22

https://doi.org/10.1016/j.patrec.2020.04.010
https://doi.org/10.1016/j.patrec.2020.04.010
https://doi.org/10.1109/IGARSS52108.2023.10282141
https://doi.org/10.1109/IGARSS52108.2023.10282141
https://doi.org/10.1109/JSTARS.2022.3153110
https://doi.org/10.1109/JSTARS.2022.3153110
https://doi.org/10.1145/384192.384193
https://doi.org/10.1145/3582016.3582025
https://doi.org/10.1145/3582016.3582025
https://doi.org/10.1007/3-540-35589-8_51
https://doi.org/10.1007/3-540-35589-8_51
https://doi.org/10.1145/1341012.1341049
https://doi.org/10.1145/1341012.1341049
https://doi.org/10.1109/TVCG.2002.1021577
https://doi.org/10.1109/TVCG.2002.1021577
https://doi.org/10.1090/dimacs/050
https://doi.org/10.1109/TIP.2021.3064223
https://doi.org/10.1109/TIP.2021.3064223
https://doi.org/10.1109/TPDS.2018.2829724
https://doi.org/10.1109/TPDS.2018.2829724
https://doi.org/10.1007/978-3-319-57240-6_29
https://doi.org/10.1007/978-3-319-57240-6_29
https://doi.org/10.1016/j.patrec.2020.07.006
https://doi.org/10.1016/j.patrec.2020.07.006
https://doi.org/10.1007/s11554-016-0604-0


s11554-016-0604-0

[24] Carlinet, E., Blin, N., Lemaitre, F., Lacas-
sagne, L., Geraud, T.: Max-tree computation
on GPUs. IEEE TPDS (2022) https://doi.
org/10.1109/TPDS.2022.3158488

[25] Perrin, R., Leborgne, A., Passat, N.,
Naegel, B., Wemmert, C.: Multi-scale
component-tree: A hierarchical represen-
tation for sparse objects. In: DGMM, pp.
312–324. Springer, Cham (2024). https:
//doi.org/10.1007/978-3-031-57793-2 24

[26] Cousty, J., Perret, B., Phelippeau, H.,
Carneiro, S., Kamlay, P., Buzer, L.: An
algebraic framework for out-of-core hierar-
chical segmentation algorithms. In: DGMM,
pp. 378–390 (2021). https://doi.org/10.1007/
978-3-030-76657-3 27

[27] Lefèvre, J., Cousty, J., Perret, B., Phe-
lippeau, H.: Join, select, and insert: Effi-
cient out-of-core algorithms for hierarchical
segmentation trees. In: Discrete Geometry
and Mathematical Morphology, pp. 274–286.
Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-19897-7 22

[28] Perret, B., Chierchia, G., Cousty, J.,
Guimarães, S.J.F., Kenmochi, Y., Najman,
L.: Higra: Hierarchical graph analysis. Soft-
wareX 10, 100335 (2019) https://doi.org/10.
1016/j.softx.2019.100335

[29] Najman, L., Cousty, J.: A graph-based math-
ematical morphology reader. Pattern Recog-
nition Letters 47, 3–17 (2014) https://doi.
org/10.1016/j.patrec.2014.05.007 . Advances
in Mathematical Morphology

[30] Passat, N., Kurtz, C., Vacavant, A.: Edi-
torial — virtual special issue: “hierarchical
representations: New results and challenges
for image analysis”. Pattern Recognition Let-
ters 138, 201–203 (2020) https://doi.org/10.
1016/j.patrec.2020.07.019

[31] Bosilj, P., Kijak, E., Lefèvre, S.: Partition and
inclusion hierarchies of images: A comprehen-
sive survey. Journal of Imaging 4(2) (2018)
https://doi.org/10.3390/jimaging4020033

[32] Salembier, P., Oliveras, A., Garrido, L.:
Antiextensive connected operators for image
and sequence processing. IEEE Transactions
on Image Processing 7(4), 555–570 (1998)
https://doi.org/10.1109/83.663500

[33] Matas, P., Dokládalová, E., Akil, M., Grand-
pierre, T., Najman, L., Poupa, M., Georgiev,
V.: Parallel algorithm for concurrent com-
putation of connected component tree. In:
Advanced Concepts for Intelligent Vision
Systems, pp. 230–241. Springer, Berlin,
Heidelberg (2008). https://doi.org/10.1007/
978-3-540-88458-3 21

[34] Wilkinson, M.H.F., Hui Gao, Hesselink,
W.H., Jonker, J.-E., Meijster, A.: Concur-
rent computation of attribute filters on
shared memory parallel machines 30(10),
1800–1813 https://doi.org/10.1109/TPAMI.
2007.70836 . Accessed 2023-03-17

[35] Ouzounis, G.K., Soille, P.: Pattern spectra
from partition pyramids and hierarchies. In:
Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.)
Mathematical Morphology and Its Applica-
tions to Image and Signal Processing, pp.
108–119. Springer, ??? (2011). https://doi.
org/10.1007/978-3-642-21569-8 10

[36] Havel, J., Merciol, F., Lefèvre, S.: Effi-
cient schemes for computing α-tree rep-
resentations. In: Mathematical Morphology
and Its Applications to Signal and Image
Processing, pp. 111–122. Springer, Berlin,
Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38294-9 10

[37] Ronse, C.: Partial partitions, partial con-
nections and connective segmentation. JMIV
32(2), 97–125 (2008) https://doi.org/10.
1007/s10851-008-0090-5

[38] Group, T.H.: Hierarchical Data Format, Ver-
sion 5. https://github.com/HDFGroup/hdf5

[39] Miles, A., Kirkham, J., Durant, M.,
Bourbeau, J., Onalan, T., Hamman,
J., Patel, Z., shikharsg, Rocklin, M.,
dussin, Schut, V., Andrade, E.S., Aber-
nathey, R., Noyes, C., sbalmer, bot,
Tran, T., Saalfeld, S., Swaney, J., Moore,

23

https://doi.org/10.1007/s11554-016-0604-0
https://doi.org/10.1007/s11554-016-0604-0
https://doi.org/10.1109/TPDS.2022.3158488
https://doi.org/10.1109/TPDS.2022.3158488
https://doi.org/10.1007/978-3-031-57793-2_24
https://doi.org/10.1007/978-3-031-57793-2_24
https://doi.org/10.1007/978-3-030-76657-3_27
https://doi.org/10.1007/978-3-030-76657-3_27
https://doi.org/10.1007/978-3-031-19897-7_22
https://doi.org/10.1007/978-3-031-19897-7_22
https://doi.org/10.1016/j.softx.2019.100335
https://doi.org/10.1016/j.softx.2019.100335
https://doi.org/10.1016/j.patrec.2014.05.007
https://doi.org/10.1016/j.patrec.2014.05.007
https://doi.org/10.1016/j.patrec.2020.07.019
https://doi.org/10.1016/j.patrec.2020.07.019
https://doi.org/10.3390/jimaging4020033
https://doi.org/10.1109/83.663500
https://doi.org/10.1007/978-3-540-88458-3_21
https://doi.org/10.1007/978-3-540-88458-3_21
https://doi.org/10.1109/TPAMI.2007.70836
https://doi.org/10.1109/TPAMI.2007.70836
https://doi.org/10.1007/978-3-642-21569-8_10
https://doi.org/10.1007/978-3-642-21569-8_10
https://doi.org/10.1007/978-3-642-38294-9_10
https://doi.org/10.1007/978-3-642-38294-9_10
https://doi.org/10.1007/s10851-008-0090-5
https://doi.org/10.1007/s10851-008-0090-5
https://github.com/HDFGroup/hdf5


J., Jevnik, J., Kelleher, J., Funke, J.,
Sakkis, G., Barnes, C., Banihirwe, A.:
Zarr-developers/zarr-python: V2.4.0.
https://doi.org/10.5281/zenodo.3773450

[40] Lucchi, A., Smith, K., Achanta, R., Knott,
G., Fua, P.: Supervoxel-based segmentation
of mitochondria in EM image stacks with
learned shape features. IEEE Transactions
on Medical Imaging 31(2), 474–486 (2012)
https://doi.org/10.1109/TMI.2011.2171705

24

https://doi.org/10.5281/zenodo.3773450
https://doi.org/10.1109/TMI.2011.2171705

	Introduction
	Prior Work
	Binary Partition Hierarchy by Altitude Ordering
	Out-of-core Binary Partition Hierarchy
	Distribution of Hierarchies
	Fundamental Operations for Distributed Hierarchy
	Computing Distribution for Generic Partitioning
	Computing Distribution on Causal Partitions

	Data Structures and Algorithms
	Data Structures
	Select
	Join
	Insert

	Experiments
	Conclusion
	Proof of Property 7
	Proof of Lemma 8
	Proof of Property 9
	Proof of Property 11

